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Classical Turbomolecular Pump
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How to calculate 
the compression curve 

of a classical turbomolecular pump ?

Classical turbomolecular pump (TMP) =  TMP without compound stage

Analytical model:  

TMP in one dimension:  
x = 0 :  High-vacuum flange ( =  inlet flange) 
x = L :  Foreline port; L is taken as the effective length of the TMP
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Basic assumptions

Ansatz:  
Q =  Qmax – Qbs

Net gas throughput =  Maximum gas throughput – Backstreaming
in forward direction

p1 · Smax = p · Smax – r·(1/ηv)·(p + p2)·(dp/dx)

ηv : Dynamic viscosity in the range of viscous flow
p2 : Empirical parameter (depends on the geometry of the TMP) { p2 =  p2(Q) } 
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Differential equation

Differential equation: ( p + p2 )·(dp/dx) =  ( p – p1 )·(C2/L) 

Boundary condition: p(x = L) = pFV ( = foreline pressure)

x : Position inside the TMP { 0 < x < L }
p : Pressure inside the TMP { p(x = 0) = pHV < p = p(x) < pFV = p(x = L) }
p1 : Lowest high-vacuum pressure which can be attained with the TMP 

at the prescribed gas throughput Q { p1 =  p1(Q) }
C2 : C2 =  ηv·Smax·L/r
ηv : Dynamic viscosity in the range of viscous flow
Smax : Maximum pumping speed at the inlet flange 

at the prescribed gas throughput Q { Smax =  Q/p1 =  S(p1) }
L : Effective length of the TMP 
r : Backstreaming coefficient { r =  r(Q) }
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Solution of the differential equation

p =  p1 + ( pFV – p1 )·exp(β·( pFV – p – C2·[ 1 – x/L ] ))

β =  1/( p1 + p2 ) C2 =  ηv·Smax·L/r

p2 and C2 are the crucial parameters of the model. 

p(x = 0) =  pHV = p1 + ( pFV – p1 )·exp(β·( pFV – pHV – C2 ))

⇒ solve for the high-vacuum pressure pHV numerically or 

⇒ use an analytical approximation, if pHV <<  pFV:  
pHV = p1 + ( pFV – p1 )·exp(β·( pFV – C2 ))

The compression curve K(pFV) of the TMP is given by 

K(pFV) =  pFV / pHV
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TMP without compound stage (100 ISO-K; Rotational speed:  750 Hz) 

Compression - Hydrogen 
( p2 =  6,2 x 10-2 mbar, C2 =  0,4 mbar ) 

Excellent agreement between analytical model and experimental data
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Intuition

The analysis of the compression curves leads to the following intuition:  

The parameters p2 and C2 are constants and do not depend on 
throughput, provided the throughput Q is less than  100 sccm.

Consequently,

Smax/r =  C2/(ηv·L)

does not depend on throughput and is a constant. 
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Q =  0  ⇒ p1 =  0  

⇒ pHV = pFV·exp(( pFV – pHV – C2 )/p2) 

⇒ K0(pFV) =  pFV/pHV = exp( – ( pFV – pHV – C2 )/p2) 

In the limit pHV <<  pFV <<  C2 we obtain for the zero throughput 
compression of the TMP:  
⇒ K0 → k0 =  exp(C2/p2) 

Hypothesis:  The zero throughput compression curve of a TMP can be 
derived from a compression curve for finite throughput, e.g. Q = 1 sccm. 
This can be achieved by using the parameters p2 and C2 determined from 
the Q =  1 sccm-compression curve to calculate the zero throughput 
compression curve.

Zero throughput compression 
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TMP without compound stage (100 ISO-K; Rotational speed:  750 Hz) 

Compression - Hydrogen 
( p2 =  6,2 x 10-2 mbar, C2 =  0,4 mbar, k0 =  exp(C2/p2) =  634 ) 
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TMP without compound stage (100 ISO-K; Rotational speed:  750 Hz) 

Compression - Hydrogen 
( p2 =  6,2 x 10-2 mbar, C2 =  0,4 mbar, k0 =  exp(C2/p2) =  634 ) 

Excellent agreement between analytical model and experimental data
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TMP w/o Compound Stage (100 ISO-K; Rotational Speed:  750 Hz)

Compression - Helium
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How to calculate 
the compression curve 

of a wide range turbomolecular pump ?

Wide range turbomolecular pump (TMP) =  
Classical TMP plus compound stage

Apply the analytical model twice !   

Turbo stage: compression from pHV to intermediate pressure pint
K1 =  pint / pHV

Compound stage: compression from intermediate pressure pint to pFV
K2 =  pFV / pint

Total compression: K = K1 · K2 =  pFV / pHV
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TMP with Compound Stage (100 ISO-K; Rotational Speed:  1000 Hz)

Compression - Hydrogen 
The separation of turbo and compound stage works.
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Q =  1 sccm H2 - Fit, 
Turbo Stage

Q =  1 sccm H2 - Fit, 
Compound Stage

Q =  1 sccm H2, 
Turbo * Compound Stage

p21 =  8,10E-02 mbar, C21 =  0,40 mbar 
p22 =  1,35 mbar, C22 =  5,80 mbar 
K2(0,2 mbar) =  28,1 
K1(7,1E-03 mbar) =  39,0 
K(0,2 mbar) =  28,1 * 39,0 =  1090
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TMP with Compound Stage (100 ISO-K; Rotational Speed:  1000 Hz) 
Compression - Hydrogen 

The true zero-throughput compression curves can be calculated.
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TMP with Compound Stage (100 ISO-K; Rotational Speed:  1000 Hz) 

Compression - Nitrogen 
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TMP with Compound Stage (100 ISO-K; Rotational Speed:  1000 Hz)

Pumping Speed for Hydrogen 
Turbo Stage and Compound Stage
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Smax =  S(p1) =  S0 * [(p1/p1h) + 1] -1
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p2 is a nonlinear function of lambda·p !
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There is a strong correlation between C2 and viscosity !
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TMP w/o Compound Stage (100 ISO-K; Rotational Speed:  750 Hz)

Compression - 
Hydrogen, Helium, Nitrogen, Argon
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Principle of Roots 
Operation

Ø Two impellers rotate past each 
other in close proximity.

Ø In impeller positions I and II, the 
volume in the intake flange is 
increased. 

Ø In position III, part of the volume 
is sealed off from the intake 
side.

Ø In position IV, this volume is 
opened to the discharge side.

Ø As the impellers rotate further, 
the compressed gas is ejected 
via the discharge flange. 
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How to calculate 
the compression curve 

of a Roots blower ?

Use the same mathematical formalism as shown above in case of 
turbomolecular pumps ! 

Analytical model:  

Roots blower (RB) in one dimension:  
x = 0 :  High-vacuum flange ( =  inlet flange) 
x = L :  Foreline port; L is taken as the effective length of the 

Roots blower



23 Oerlikon Leybold Vacuum – Proprietary and Confidential – Gerhard Voss – 2006

Basic assumptions

Ansatz:  
Q =  Qmax – Qbs – Qbl

Net = Maximum – Backstreaming – Backleakage
gas throughput gas throughput 

in forward direction 

p1 · Smax = pHV · Smax – r·(1/ηv)·(p + p2)·(dp/dx) – pFV · Sbl

ηv : Dynamic viscosity in the range of viscous flow
p2 : Empirical parameter (depends on the geometry of the Roots blower) 

{ p2 =  p2(Q) }
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Backleakage
in Roots blowers

Qbl =  pFV · Sbl =  Backleakage

Sbl : Volume flow rate of gas transported by the rotors 
from the fore-vacuum side to the high-vacuum side,  
adsorption of gas on the fore-vacuum side –
desorption of gas on the high-vacuum side, 
depends on foreline pressure

pFV : Foreline pressure 

pHV : High-vacuum pressure
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Differential equation

Differential equation:  (r/ηv)·(p + p2)·(dp/dx) =  (pHV – p1 )·Smax – pFV·Sbl

Boundary condition:    p(x = 0) = pHV ( = high-vacuum pressure)

x : Position inside the RB { 0 < x < L }
p : Pressure inside the RB { p(x = 0) = pHV < p = p(x) < pFV = p(x = L) }
p1 : Lowest high-vacuum pressure which can be attained with the RB 

at the prescribed gas throughput Q { p1 =  p1(Q) }
ηv : Dynamic viscosity in the range of viscous flow
Smax : Maximum pumping speed at the inlet flange 

at the prescribed gas throughput Q { Smax =  Q/p1 =  S(p1) }
r : Backstreaming coefficient { r =  r(Q) }
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Solution of the differential equation

First step:  Neglect backleakage (Sbl = 0) 

Then the solution of the differential equation is:  

p(x) =  +[ (pHV + p2)2 + 2·(pHV – p1)·C2·(x/L) ]1/2 – p2

C2 =  ηv·Smax·L/r

p2 and C2 are the crucial parameters of the model.
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p(x = L) =  pFV =  +[ (pHV + p2)2 + 2·(pHV – p1)·C2 ]1/2 – p2 

⇒ (pHV + p2 + C2)2 =  (pFV + p2 + C2)2 – 2·(pFV – p1)·C2

⇒ (pHV + p2 + C2)2 – (pFV + p2)2 =  2·(p1 + p2)·C2 + C2
2

High-vacuum pressure and foreline pressure form a hyperbola !

Asymptotic behaviour:  
1. pFV =  p1 ⇒ pHV =  pFV
2. pFV >>  C2 ⇒ pHV =  pFV – C2

High-vacuum pressure vs. foreline pressure 
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RuVac WA 251 + ScrewLine SP 630
pHV and pFV form a hyperbola
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Predicted by Calculation 
p1 =  0.19 mbar, Q =  38 mbar*m³/h 
p2 =  6 mbar, C2 =  192 mbar

Experimental Data 
p1 =  0.19 mbar, Q =  38 mbar*m³/h

Predicted by Calculation 
p1 =  0.68 mbar, Q =  141 mbar*m³/h 
p2 =  6 mbar, C2 =  192 mbar

Experimental Data 
p1 =  0.68 mbar, Q =  141 mbar*m³/h

(pHV + p2 + C2)² - (pFV + p2)² =  2*(p1 + p2)*C2 + C2²
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RuVac WA 251 + ScrewLine SP 630 (50 Hz)
Compression for Air 

p2 =  6 mbar, C2 =  192 mbar, Sbl, 0/Smax =  0.02, pbl =  0.165 mbar
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Q =  547 mbar*m³/h
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Q =  1.773 mbar*m³/h

Asymptote 
K =  1 + (C2/(pFV - C2))

pmax - Kmax
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Intuition

The analysis of the compression curves leads to the following intuition:  

⇒ One pair of parameters (p2, C2) can be used for all throughputs.

⇒ C2 =  ηv·Smax·L/r does not depend on throughput. 

⇒ Consequently, Smax/r does not depend on throughput. 
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Compression =  K =  K(pFV) =  pFV/pHV

Asymptotic behaviour:  
1. pFV =  p1 ⇒ K =  1 
2. pFV >>  C2 ⇒ K =  1 + [ C2/(pFV – C2) ]

Compression vs. foreline pressure 

At prescribed gas throughput Q =  p1·Smax(p1) the maximum of the 
compression occurs at the following foreline pressure:  

pFV, Kmax = pmax =  [ 2·p1·p2 + (p2 + C2)·(2·p1·ψ)1/2 ]/(2·p2 + C2) 

≅ [ 2·p1·(2·p2 + C2) ]1/2

ψ =  2·(p1 + p2) + C2
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Q =  0 

⇒ (pHV + p2 + C2)2 =  (pFV + p2 + C2)2 – 2·pFV·C2

In the limit pFV <<  p2 we obtain for the zero throughput compression:  

⇒ K0 → k0 =  (p2 + C2)/p2

Zero throughput compression 
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RuVac WA 251 + ScrewLine SP 630 (50 Hz)
Compression for Air 

p2 =  6 mbar, C2 =  192 mbar, Sbl, 0/Smax =  0.02, pbl =  0.165 mbar
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Q =  547 mbar*m³/h

Q =  891 mbar*m³/h
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pmax - Kmax

k0  
=  (p2+C2)/p2
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Substitute p1 by p1 + [ (pFV*Sbl(pFV))/Smax ] !

The Ansatz

Sbl(pFV) =  Sbl, 0 · [ pbl/(pbl + pFV) ] 

leads to excellent agreement with the experiment.

pFV·Sbl(pFV) → pFV·Sbl, 0 for pFV << pbl
→ pbl·Sbl, 0 for pFV >> pbl

K0 → k0, bl =  (p2 + C2)/[ p2 + C2·(Sbl, 0/Smax) ]

Zero throughput compression 
taking backleakage into account
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RuVac WA 251 + ScrewLine SP 630 (50 Hz)
Compression for Air 

p2 =  6 mbar, C2 =  192 mbar, Sbl, 0/Smax =  0.02, pbl =  0.165 mbar
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Q =  0 mbar*m³/h, 
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Q =  '0' mbar*m³/h, 
mit Rückförderung
Q =  38 mbar*m³/h

Q =  141 mbar*m³/h

Q =  334 mbar*m³/h

Q =  547 mbar*m³/h

Q =  891 mbar*m³/h

Q =  1.773 mbar*m³/h

Asymptote

pmax - Kmax
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RuVac WA 251 + ScrewLine SP 630 (50 Hz)
Compression for Air 

p2 =  6 mbar, C2 =  192 mbar, Sbl, 0/Smax =  0.02, pbl =  0.165 mbar
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Q =  1.773 mbar*m³/h

Asymptote 
K =  1 + (C2/(pFV - C2))

k0  
=  (p2+C2)/p2
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Using the analytical results of the model the following expression for the 
conductance can be derived:  

C =  [ Smax/(2·C2) ]·(pHV + pFV + 2·p2) 

Note that

Cmolecular =  (p2/C2) · Smax =  Smax/(k0 – 1) 

can be taken as the conductance of the Roots blower in the range of  
molecular flow.

⇒ C =  Cmolecular·[ 1 + (pHV + pFV)/(2·p2) ] 

The conductance of a Roots blower 
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n An analytical model has been presented for calculating and 
systematically analysing the compression curves for turbomolecular
pumps, Wide Range turbomolecular pumps and Roots blowers.

n Analytical expressions for the compression at finite (Q >  0) 
and at zero throughput (Q =  0) are provided by the model.

n Only three parameters (p1, p2, C2) are required to describe the 
performance of a classical turbo stage, a compound stage or a Roots 
blower stage. 
There is strong evidence, that that the compression curve for zero gas 
throughput can be derived from a compression curve for a finite gas 
throughput.

n Comparison with experimental data shows that the analytical model 
provides an excellent qualitative and quantitative description of the 
observed phenomena.

On the compression 
in turbomolecular pumps and Roots blowers

Summary
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Klassische TMP (100 ISO-K; 16 KF; Drehzahl:  750 Hz)

Kompression für Stickstoff 
Das Modell liefert eine exzellente quantitative Beschreibung 

der beobachteten Phänomene.   
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Fit for Q =  1 sccm N2

Calc. for Q =  1 sccm N2 
using EXCEL 'Solver'

pHV - p1 =  (pFV - p1)*exp(β*(pFV - pHV - C2)

p1 =  8,00E-05 mbar, p2 =  4,95E-02 mbar, 

C2 =  1,00 mbar, β =  20,157 mbar -1
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Klassische TMP (100 ISO-K; 16 KF; Drehzahl:  750 Hz)

Kompression für Stickstoff
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Fit for Q =  1 sccm N2

Calculation for N2 - Q = 1
using EXCEL 'Solver'

Fit for Q =  10 sccm N2

Fit for Q =  50 sccm N2

Fit for Q =  100 sccm N2

Fit for Q =  200 sccm N2

pHV - p1 =  (pFV - p1)*exp(β*(pFV - pHV - C2)
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Classic TMP (100 ISO-K; 16 KF)

Compression for Nitrogen
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Theory N2 - Q = 0

TMP 361, N2, Fit '0' sccm 
O-ring-sealed

TMP 361, N2, Fit  1 sccm

TMP 361, N2, Fit  10 sccm

TMP 361, N2, Fit  100 sccm
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RuVac WA 251 + ScrewLine SP 630
pHV and pFV form a hyperbola
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pFV =  pHV

Asymptote 
pFV =  pHV + C2

Predicted by Calculation 
p1 =  0.19 mbar, Q =  38 mbar*m³/h 
p2 =  6 mbar, C2 =  192 mbar

Asymptote:  
  y - y0 =  x - x0 

  y0 =  - p2  =  - 6  
  x0 =  - ( p2 + C2 ) =  - 198
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TMP with Compound Stage (100 ISO-K; Rotational Speed:  1000 Hz) 

 Pumping Speed for Nitrogen, Helium and Hydrogen 
Turbo Stage and Compound Stage
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TW 300 - N2; TS  240 l/s 
p1h =  5,00E-02

TW 300 - He; TS  230 l/s 
p1h =  2,30E-02

TW 300 - H2; TS  135 l/s 
p1h =  1,00E-02

TW 300 - N2, CS  16,5 l/s
pch =  5,0E-02

TW 300 - H2, CS  14,5 l/s
pch =  4,5E-02

TW 300 - He, CS  10,0 l/s
pch =  1,2E-01


